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Problem Set #7

Exercise 1:
Let D > 1 be a square free integer and d the discriminant of the real quadratic number
field K = Q(

√
D). Let x1, y1 be the uniquely determined rational integer solution of

the equation
x2 −Dy2 = −4

or − in case this equation has no rational integers solutions of the equation

x2 −Dy2 = 4

for which x1, y1 > 0 are as small as possible. Then

ε1 =
x1 + y1

√
D

2

is a fundamental unit of K. (The pair of equations x2 − dy2 = ±4 is called Pell’s
equation.)
Solution:
First, since K = Q(

√
D) with D > 0 real implies r = 2, s = 0 and then by Dirichlet’s

unit theorem, there is exactly r + s − 1 = 2 − 1 = 1 fundamental units ε ∈ OK. We
have proven that

OK =

{
Z[1+

√
D

2
] if D ≡ 1 mod 4

Z[
√
D] if D ≡ 2, 3 mod 4

and units are ±1εn, since ±1 are the only 2-roots of unity in Q(
√
D)).

Now, we recall that ε ∈ OK∗ if and only if NK/Q(ε) = ±1. Now,

1. if D ≡ 1 mod 4, ε = 1/2x+1/2
√
Dy ∈ Z[1+

√
D

2
] with x, y ∈ Z so that x2−Dy2 =

±4 and

2. if D ≡ 2, 3 mod 4, ε = x +
√
Dy ∈ Z[

√
D] with x, y ∈ Z so that x2 −Dy2 = ±1

so that ε = x+
√
Dy with x, y ∈ Z. But now this is equivalent to x2−Dy2 = ±4.

Indeed, if D ≡ 2 mod 4, x2 ≡ 0mod2 then x is even implying y to be even. Now
if D ≡ 3 mod 4, x2 ≡ 3y2 mod 4 but since square mod 4 are either congruent to
1 or 0, the only possibility is that x and y are even.

Notice that if u, v ∈ Z satisfy (u/2)2 − N(v/2)2 = ±1 and u/2 + v/2
√
D > 1, then

u/2− v/2
√
D, being equal to (u/2 + v/2

√
D)−1 lies between −1 and 1. Addition of the

inequalities u/2 + v/2
√
D ≥ 1 and −1 ≤ u/2− v/2

√
D ≤ 1 implies u > 0. Substraction

of these inequalities yields v > 0. So, requiring that u and v are minimal is equivalent
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to asking that u/2 + v/2
√
D is minimal greater than 1. Clearly if x2 −Dy2 = −4 as a

solution the minimal one will be smaller than the minimal one for x2 −Dy2 = 4.

Finally by Dirichlet theorem we know that there is a fundamental unit e such that
for any other unit u ∈ OK∗ there is a n such that en = u and up to passing to the
inverse, we can suppose that e > 1. But then if ε1 is not a fundamental, then ε1 = en

with n ≥ 0 since e and ε1 > 1 but then ε1 > e > 1 since e > 1 which is in contradiction
with the minimality of ε1. As a consequence, ε1 is a fundamental unit.

Exercise 2:
Check the following table of fundamental units ε1 for Q(

√
D):

D 2 3 5 6 7 10

ε1 1 +
√

2 2 +
√

3 (1 +
√

5)/2 5 + 2
√

6 8 + 3
√

7 3 +
√

10

Solution:
Noting that 2, 3, 6, 7, 10 ≡ 2, 3 mod4 and 5 ≡ 1 mod 4.
To solve this exercise, thank to the previous exercise it is enough to show that all the ε1
satisfies NK/Q(ε1) = ± and are minimal > 1 as described before.

Exercise 3:
Let ζ be a primitive m-root of unity, p an odd prime. Show that

Z[ζ]∗ = (ζ)Z[ζ + ζ−1]∗

Show that
Z[ζ]∗ = {±ζk(1 + ζ)n|0 ≤ k < 5, n ∈ Z}

if p = 5.

Solution:
If we do assume, that we know that OK = Z[ζ] (Proposition 10.2 up to proving it).
Note that, KR = Q(ζ + ζ−1) , since clearly ζ + ζ−1 is real and it has index 2 over K
because it satisfies the irreducible polynomial

x2 − (ζ−1 + ζ)x+ 2 = 0

And
OKR = OK ∩KR = Z[ζ−1 + ζ]

So that
Z[ζ−1 + ζ]∗ ⊆ Z[ζ]∗

Now, the group of the roots of unity µ(K) of K is clearly (ζ). So that (ζ)Z[ζ−1 + ζ]∗ ⊆
Z[ζ]∗.
As a consequence, it is enough to prove that any ε ∈ Z[ζ]∗, there exists a unit ε1 ∈ O∗K+

and an integer r such that ε = ζr · ε1.
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Choose then ε as above and set α = ε/ε̄. Clearly, α is an algebraic integer with absolute
value 1; also, all of its conjugates have absolute value 1, since they commute with
conjugation.
Claim: An algebraic integer α whose Galois conjugates all have absolute value 1 must
be a root of unity.
Proof of the claim: Say that the degree of α is d. Then each of its powers have degree
no more than d. Let f(x) be the minimal polynomial for a power of α. Then the ith

coefficient of f is bounded by the binomial coefficient

(
i
d

)
since all conjugates of α

are bounded by 1. Therefore there are only finitely many such polynomials, ergo finitely
many powers of α.
The only roots of unity in K are ±ζa, so ε/ε̄ = ±ζa for some a. We will now show that
± = +.
Assume that ± = −. Since ε is an integer,

ε = b0 + b1ζ + ...+ bp−2ζ
p−2 ≡ b0 + b1 + ...+ bp−2 mod ζ − 1

Since ε̄ = b0 + b1ζ
i + .., the same congruence is true for ε̄. therefore,

ε = −ζaε̄ ≡ −ε mod ζ − 1

and 2ε ≡ 0 mod ζ − 1. But this is impossible because ζ − 1 is relatively prime to 2 and
ε is a unit.
Thus, we conclude that ε/ε̄ = ζa. Letting 2r ≡ a mod p and ε1 = ζ−rε, we get ε = ζrε1
and ε̄1 = ε1 so that ε1 ∈ KR.

For the case when p = 5; Recall that the Galois group K/Q is

Gal(K/Q) = {σ : ζ 7→ ζa, a ∈ (Z/nZ)×}

Note that K is a totally complex field, there is r1 = 0 real embeddings of K into C
and r2 = (p− 1)/2 conjugate pairs of complex embeddings. Note that every pth root of
unity not equal to 1 is primitive, so the embeddings K → C are given by ζ 7→ ζa for
a = 1, .., p − 1. Clearly each of these is not a real embedding. Thus they are complex
embedding and the result follows, since deg(K/Q) = r1 + 2r2.
As p|2p−1 − 1, so that z2

p−1
= z, 1 + ζ ∈ Z[ζ] and

NK/Q(1 + ζ) =
∏
σ

σ(1 + ζ) = (1 + z)...(1 + zp−1) =
z2 − 1

z − 1
...
z2

p−1 − 1

z2p−2 − 1
= 1

So that 1 + ζ ∈ O∗K.
Now, observe that ζ + ζ−1, for p = 5, satisfies ζ4 + ζ3 + ζ2 + ζ + 1 = 0; and this can be
rearranged to

(ζ + ζ−1)2 + (ζ + ζ−1)− 1 = 0

so that letting θ = ζ + ζ−1 we get:

θ2 + θ − 1 = 0
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As a consequence θ = −1±
√
5

2
.

But since θ = e2iπ/5 + e−2iπ/5 = 2cos(2π/5) > 0, then θ = −1+
√
5

2
.

So that Q(
√

5) = Q(ζ + ζ−1) is a subfield of K and ”the” fundamental unit for Q(
√

5)
is as shown earlier η = (1 +

√
5)/2.

Let u a unit in Q(ζ) then uū is a unit in Q(
√

5) (where ū is the complex conjugate
of u). In fact uū is in KR = Q(

√
5), since uū = uū and it is a unit. Note that

(1 + ζ)(1 + ζ−1) = 2 + ζ + ζ−1 = 2 + −1+
√
5

2
= 3+

√
5

2
= η2.

But now, if 1 + ζ is not a fundamental unit in K then there is a fundamental unit in
K and an integer n such that such that 1 + ζ = un, and (uū)n = 3+

√
5

2
. But, for n > 1,

the n

√
3+
√
5

2
is not in Z[(1 +

√
5)/2].

Exercise 4:
Let ζ be a primitive mth root of unity, m ≥ 3. Show that the numbers 1−ζk

1−ζ for

(k,m) = 1 are units in the ring of integers of the field Q(ζ). The subgroup of the group
of units they generate is called the group of cyclotomic units.

Solution:
Since 1−ζk

1−ζ = 1 + ζ + ζ2 + ... + ζk−1 ∈ Z[ζ] = OK. Now, since (k,m) = 1 then there is

a r ∈ Z such that kr ≡ 1 mod p and then p|kr − 1 so that ζkr = ζ. Then, the inverse

1− ζ
1− ζk

=
1− ζkr

1− ζk
=

1− (ζk)r

1− ζk
= 1 + ζk + ...+ (ζk)r−1 ∈ Z[ζ] = OK

Exercise 5:
a and are ideals of A, then one has a = aB ∩ A and a|b⇔ aB|bB.

Solution:
We start by proving that a|b⇔ aB|bB.
If a|b then b ⊆ aB, so that bB ⊆ aB.
For the converse, first notice the following.
Let a and b be ideals of A.
We can write them uniquely as a product of coprime prime:

a =
r∏
i=1

peii

b =
l∏

i=1

qfii

As a consequence, the unique factorization in prime for aB and bB,

aB =
r∏
i=1

(

ri∏
j=1

P
eij
ij )ei
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bB =
l∏

i=1

(

li∏
j=1

Q
fij
ij )fi

Where the Pij of B are the prime over pi and Qij of B are the prime over qi.
So, that the only prime appearing in the factorization of aB are the prime above the pi
and of bB are the prime above the qi.
Now, suppose that aB|bB. So that all the Pij appear in the decomposition of bB. We
first prove that the prime appearing in the decomposition of a divide also b. Indeed,
take one of the pi, if pi - b, then pi is not one of the qi, so that the Pij’s over pI cannot
appear in the decomposition of bB, and this contradict what we have just said above.
Now, we just have that ei = va(pi) ≤ vb(pi). For that we write

b =
r∏
i=1

pfii c

with (c, pi) = 1 for any i. Then, we get:

bB =
l∏

i=1

(

li∏
j=1

P
eij
ij )fi(cB)

And since aB|bB, and we are in Dedekind domain then

eijei = vaB(Pij) ≤ eijfi = vbB(Pij)

So that,
va(pi) ≤ vb(pi)

as wanted.
And, we have just proved that, a|b.
Notice that then we have that a = b if and only if aB = bB. (∗)
Now, we prove that aB ∩ A = a. Clearly, a ⊆ aB ∩ A, for a ∈ a then since 1 ∈ B,
a = a · 1 ∈ aB and a ∈ A as in an ideal of A, so that a ∈ aB ∩ A.
Noticing that (aB ∩ A)B = aB. In fact, a ⊆ aB and a ⊆ A then aB ⊆ (aB ∩ A)B but
now aB ∩A ⊆ aB so we get the other inclusion. But using the previous remark (∗), we
get exactly what we wanted.
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Preliminary about flatness and Dedekind domain.
An A-moduleM is called flat (over A) if for every injective homomorphism of A-modules
N → N ′, N ⊗AM → N ′ ⊗AM is injective.
Let A be an integral domain and M and M an A-module. An element x ∈M is called
torsion element if there is a non-zero a ∈ A such that ax = 0. We call M torsion free
over A if there is no nonzero torsion element in M . Here theorems about flatness easily
found in the literature, good to know.
Let A be a principal ideal domain. An A-module M is flat if and only if it is torsion-free
over A.
Let M be an A-module. The following properties are equivalent:

1. M is flat over A;

2. Mp is flat over Ap for every prime ideal p of A;

3. Mm is flat over Am for every maximal ideal m of A;

Moreover, a Dedekind domain is a Noetherian integral domain A whose localizations
Ap at the prime ideals p are principal ideal domains.
Let A be a Dedekind domain An A-module is flat if and only if it is torsion-free over A.
In particular, every injective ring homomorphism A→ B with B an integral domain is
flat.

Exercise 5:
a and are ideals of A, then one has a = aB ∩ A and a|b⇔ aB|bB.

Solution:
Recall that if M is a A-module. Then M = 0 if and only if Mm = 0 for every maximal ideal
m of A.
Proof: Let x ∈ M . Let us consider the ideal I = {a ∈ A|ax = 0}. If I 6= A, there
exists a maximal ideal m of A such that I ⊆ m. As Mm = 0, there exists an s ∈ A\m
such that sx = 0. Hence s ∈ I, which contradicts the assumption that I ⊆ m. Conse-
quently, I = A and 1 ∈ I and hence x = 0.
Recall also a very important lemma in commutative algebra: (Nakayama’s lemma). Let A
be a local ring with maximal ideal m and a finitely generated A-module such that M = m.
Then M = 0.
Proof: Let {x1, ..., xn} be a system of generators of M . We may suppose n minimal.
There exist αi ∈ m such that xn =

∑
αixi. Hence (1− αn)xn =

∑
i<n αixi. As 1− αn

is invertible, and n is assumed to be minimal, it follows that n = 1 and xn = 0.

Note that since B is Dedekind, then for any p (prime) maximal, we have proven that
pB 6= B.
Claim: If N is a finitely generated as A-module. we have that B ⊗A N = 0 implies
N = 0.
Indeed, from the first remark, we may assume that A is local with maximal ideal m. By
tonsuring with k = A/m, we obtain M/mM ⊗k N/mN = 0. It follows that N/mN = 0.
(Since now we have a tensor product of vector space, if we have a basis {ei} a base
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of M/mM and {fi} a base of N/mN then {ei ⊗ fj} is a base on the tensor product).
Hence N = 0, by Nakayama’s Lemma.
Notice that a ⊆ aB ∩ A, for a ∈ a then since 1 ∈ B, a = a · 1 ∈ aB and a ∈ A as
in an ideal of A, so that a ∈ aB ∩ A. so that, the map A/a → B/aB. Notice that
B/aB = B ⊗A A/a is well define. Let N to be the kernel of this map, then we get the
exact sequence 1→ N → A/a→ B/aB. Tensoring by B over A, by flatness of B over
A (since A→ B is an injective ring homomorphism with A Dedekind and B an integral
domain), we get the exact sequence 1→ N ⊗A B → B/aB → B/aB ⊗A B.
But, now B/aB → B/aB ⊗A B is injective. (since now, B/aB and B are both B
module, if y ⊗ 1 = 0 then (y) ⊗ (1) = 0 and we can apply the claim since (y) and (1)
are finitely generated, and find that y = 0).
So that N ⊗A B = 0 and then N equals 0, which means that the first map is injective.
As a consequence aB ∩ A = a.

If a|b then b ⊆ aB, so that bB ⊆ aB. Now, if bB ⊆ aB. Now, if bB ⊆ aB,
then bB ∩ A ⊆ aB ∩ A, then b ⊆ a.
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